Murata Power Solutions

PRODUCT OVERVIEW

The ADC-207 is the industry's first 7-bit flash converter using an advanced high-speed VLSI 1.2 micron CMOS process. This process offers some very distinctive advantages over other processes, making the ADC-207 unique. The smaller geometrics of the process achieve high speed, better linearity and superior temperature performance.

Since the ADC-207 is a CMOS device, it also has very low power consumption (250 mW). The device draws power from a single +5 V supply and is conservatively rated for 20MHz operation. The ADC-207 allows using sampling apertures as small as 12 ns, making it more closely approach an ideal sampler. The small
sampling apertures also let the device operate at greater than 20 MHz .

The ADC-207 has 128 comparators which are auto-balanced on every conversion to cancel out any offsets due to temperature and/or dynamic effects. The resistor ladder has a midpoint tap for use with an external voltage source to improve integral linearity beyond 7 bits. The ADC-207 also provides the user with 3-state outputs for easy interfacing to other components.

There are six models of the ADC-207 covering two operating temperature ranges, 0 to $+70^{\circ} \mathrm{C}$ and -55 to $+125^{\circ} \mathrm{C}$. Two high-reliability "QL" models are also available.

Figure 1. ADC-207 Functional Block Diagram (DIP Pinout)

For full details go to
www.murata-ps.com/rohs

INPUT/OUTPUT CONNECTIONS		
DIP Pins	FUNCTION	LCC Pins
1	CLOCK INPUT	1
2	DIGITAL GROUND	4
3	-REFERENCE	5
4	ANALOG INPUT	6
5	MIDPOINT	7
6	+REFERENCE	8
7	ANALOG GROUND	9
8	CS1	11
9	CS2	12
10	OVERFLOW	13
11	BIT 1 (MSB)	14
12	BIT 2	16
13	BIT 3	17
14	BIT 4	19
15	BIT 5	20
16	BIT 6	21
17	BIT 7 (LSB)	23
18	+5V SUPPLY	24

ABSOLUTE MAXIMUM RATINGS		
	LIMITS	UNITS
PARAMETERS	-0.5 to +7	Volts
Power Supply Voltage (+V $V_{\text {DD }}$)	-0.5 to +5.5	Volts
Digital Inputs	-0.5 to $(+$ VDD +0.5$)$	Volts
Analog Input	-0.5 to + VDD	Volts
Reference Inputs	-0.5 to +5.5	Volts
Digital Outputs		
(short circuit protected to ground)	+300	${ }^{\circ} \mathrm{C}$
Lead Temperature (10 sec. max.)		

Functional Specifications

(Typical at +5 V power, $+25^{\circ} \mathrm{C}, 20 \mathrm{MHz}$ clock, + REFERENCE $=+5 \mathrm{~V}$,
-REFERENCE = ground, unless noted)

ANALOG INPUT	MIN.	TYP.	MAX.	UNITS
Input Type		Single-ended, non-isolated		
Input Range (dc-20MHz)	0	-	+5	Volts
Input Impedance	-	1000	-	Ohms
Input Capacitance (Full Range)	-	10	-	pF
DIGITAL INPUTS				
Logic Levels				
Logic "1"	+3.2	-	-	Volts
Logic "0"	-	-	+0.8	Volts
Logic Loading "1"	-	± 1	± 5	microamps
Logic Loading "0"	-	± 1	± 5	microamps
Sample Pulse Width				
(During Sampling Portion of Clock)	12	-	-	ns
Reference Ladder Resistance	225	330	-	Ohms
PERFORMANCE				
Conversion Rate (1)	20	25	-	MHz
Harmonic Distortion (2)				
Differential Gain (3)	-	3	-	\%
Differential Phase (3)	-	1.5	-	degrees
Aperture Delay	-	8	-	ns
Aperture Jitter	-	50	-	ps
No Missing Codes				
LC/MC grade	0	-	+70	${ }^{\circ} \mathrm{C}$
LM/MM grade	-55	-	+125	${ }^{\circ} \mathrm{C}$
Integral Linearity (4)	-	± 0.8	± 1	LSB
Over Temperature Range	-	± 1	-	LSB
Differential Nonlinearity	-	± 0.3	± 0.5	LSB
Over Temperature Range	-	± 0.4	± 0.6	LSB
Power Supply Rejection	-	± 0.02	-	\%FSR/\%Vs
DIGITAL OUTPUTS				
Data Coding		Straight binary		
Data Output Resolution	7	-	-	Bits
Logic Levels				
Logic "1"	+2.4	+4.5	-	Volts
Logic "0" (at 1.6mA)	-	-	+0.4	Volts
Logic Loading "1"	-4	-	-	mA
Logic Loading "0"	+4	-	-	mA
Output Data Valid Delay (From Rising Edge)	-	15	17	ns
POWER REQUIREMENTS				
Power Supply Range ($+\mathrm{V}_{\text {DO }}$)	+3.0	+5.0	+5.5	Volts
Power Supply Current	-	+50	+70	mA
Power Dissipation	-	250	385	mW

Footnotes:

(1) At full power input and chip selects enabled.
(2) At 4 MHz input and 20 MHz clock.
(3) For 10 -step, 40 IRE NTSC ramp test.
(4) Adjustable using reference ladder midpoint tap. See ADC-207 Operation.

PHYSICAL/ENVIRONMENTAL					
PARAMETERS	MIN.	TYP.	MAX.	UNITS	
Operating Temp. Range, Case:				${ }^{\circ} \mathrm{C}$	
LC/MC Versions	0	-	+70	${ }^{\circ} \mathrm{C}$	
MM/LM/QL Versions	-55	-	+125	${ }^{\circ} \mathrm{C}$	
Storage Temp. Range	-65	-	+150		
Package Type		18-pin ceramic DIP			
DIP			24-pin ceramic LCC		
LCC					

TECHNICAL NOTES

1. Input Buffer Amplifier - Since the ADC-207 has a switched capacitor type input, the input impedance of the 207 is dependent on the clock frequency. At relatively slow conversion rates, a general purpose type input buffer can be used; at high conversion rates DATEL recommends either the HA-5033 or Elantec 2003. See Figure 2 for typical connections.
2. Reference Ladder - Adjusting the voltage at +REFERENCE adjusts the gain of the ADC-207. Adjusting the voltage at -REFERENCE adjusts the offset or zero of the ADC-207. The midpoint pin is usually bypassed to ground through a $0.1 \mu \mathrm{~F}$ capacitor, although it can be tied to a precision voltage halfway between +REFERENCE and -REFERENCE. This would improve integral linearity beyond 7 bits.
3. Clock Pulse Width - To improve performance at Nyquist bandwidths, the clock duty cycle can be adjusted so that the low portion of the clock pulse is 12 ns wide. The smaller aperture allows the ADC-207 to closely resemble an ideal sampler. See Figure 4.
4. At sampling rates less than 100 kHz , there may be some degradation in offset and differential nonlinearity. Performance may be improved by increasing the clock duty cycle (decreasing the time spent in the sample mode).
CAUTION
Since the ADC-207 is a CMOS device, normal precautions against static electricity should be taken. Use ground straps, grounded mats, etc. The Absolute Maximum Ratings of the device MUST NOT BE EXCEEDED as irrevocable damage to the ADC-207 will occur.

Figure 2. Typical Connections for Using the ADC-207
(+REFERENCE $=+5.12 \mathrm{~V},-$ REFERENCE $=$ ground, MIDPOINT = no connection) NOTE: The reference should be held to $\pm 0.1 \%$ accuracy or better. Do not use the +5 V power supply as a reference input without precision regulation and high frequency decoupling.
Values shown here are for $\mathrm{a}+5.12 \mathrm{~V}$ reference. Scale other references proportionally. Calibration equipment should test for code changes at the midpoints between these center values shown in Table 1. For example, at the half-scale major carry, set the input to 2.54 V and adjust the reference until the code flickers equally between 63 and 64. Note also that the weighting for the comparator resistor network leaves the first and last thresholds within $1 / 2$ LSB of the end points to adjust the code transition to the proper midpoint values.

Table 1. ADC-207 Output Coding

Analog Input (Center Value)	Code	Overflow	$\begin{gathered} 1 \\ \text { MSB } \end{gathered}$	3	4	5	6	$\begin{gathered} 7 \\ \text { LSB } \end{gathered}$	Decimal	Hexadecimal (Incl. OV)
0.00V	Zero	0	00	0	0	0	0	0	0	00
+0.04V	+1LSB	0	00	0	0	0	0	1	1	01
+1.28V	+1/4FS	0	01	0	0	0	0	0	32	20
+2.52V	+1/2FS - 1LSB	0	01	1	1	1	1	1	63	3F
+2.56V	+1/2FS	0	10	0	0	0	0	0	64	40
+2.60V	+1/2FS + 1LSB	0	10	0	0	0	0	1	65	41
+3.84V	+3/4FS	0	11	0	0	0	0	0	96	60
+5.08V	+FS	0	11	1	1	1	1	1	127	7F
+5.12V	Overflow	1	11	1	1	1	1	1	255*	FF
*Note that the overflow code does not clear the data bits.										

ADC-207 OPERATION

The ADC-207 uses a switched capacitor scheme in which there is an autozero phase and a sampling phase. See
Figure 1 and Timing Diagram. The ADC-207 uses a single clock input. When the clock is at a high state (logic 1), the ADC-207 is in the auto-zero phase (Ø1). When the clock is at a low state (logic 0), the ADC-207 is in the sampling phase (Ø2). During phase 1, the 128 comparator outputs are shorted to their inputs through CMOS switches. This serves the purpose of bringing the inputs and outputs to the transition levels of the respective comparators. The inputs to the comparators are also connected to 128 sampling capacitors. The other end of the 128 capacitors are also shorted to 128 taps of a resistor ladder, via CMOS switches. Therefore, during phase 1 the sampling capacitors are charged to the differential voltage between a resistor tap and its respective comparator transition voltage.

This eliminates offset differences between comparators and yields better temperature performance. During phase $2(\emptyset 2)$ the input voltage is applied to the 128 capacitors, via CMOS switches. This forces the comparators to trip either high or low. Since the comparators during phase 1 were sitting at their transition point, they can trip very quickly to the correct state. Also during phase 2, the outputs of the comparators are loaded into internal latches which in turn feed a128-to-7 encoder. When going back into phase 1 , the output of the encoder is loaded into an output latch. This latch then feeds the 3-state output buffer.

This means that the ADC-207 is of pipeline design. To do a single conversion, the ADC-207 requires a positive pulse followed by a negative pulse followed by a positive pulse. Continuous conversion requires one cycle/sample (one positive pulse and one negative pulse). The 3-state
buffer has two enable lines, CS1 and CS2. Table 2 shows the truth table for chip select signals. CS1 has the function of enabling/disabling bits 1 through 7. CS2 has the function of enabling/disabling bits 1 through 7 and the overflow bit. Also, a full-scale input produces all ones, including the overflow bit at the output. The ADC-207 has an adjustable resistor ladder string. The top end, idle point, and bottom end are brought out for use with applications circuits.

These pins are called +REFERENCE, MIDPOINT and -REFERENCE, respectively. In typical operation +REFERENCE is tied to +5 V , - REFERENCE is tied to ground, and MIDPOINT is bypassed to ground. Such a configuration results in a 0 to +5 V input voltage range. The MIDPOINT pin can also be tied to $\mathrm{a}+2.5 \mathrm{~V}$ source to further improve integral linearity. This is usually not necessary unless better than 7-bit linearity is needed.

Table 2. Chip Select Truth Table

CS1	CS2	Bits 1-7	Overflow Bit
0	0	3-State Mode	3-State Mode
1	0	3-State Mode	3-State Mode
0	1	Data Outputed	Data Outputed
1	1	3-State Mode	Data Outputed

NOTE: Reduce the sample time (sample pulse) to 12 ns to improve performance above 20 MHz . Such a configuration will closely resemble an ideal sampler.

Figure 3. Optional Pulse Shaping Circuit

USING TWO ADC-207'S FOR 8-BIT RESOLUTION

Two ADC-207's (A and B) are cascadable for applications requiring 8 -bit resolution. The device A provides a typical 7 -bit output. The OVERFLOW signal of device A turns off device A and turns on the device B. The OVERFLOW signal of device A is also used as MSB for 8-bit operation. The device B provides the other seven bits from the input signal. Figure 4 shows the circuit connections for the application.

Figure 4. Using Two ADC-207's for 8-Bit Operation
NOTE: The output data bit numbering is offset by a bit to the device B's output.

BEAT FREQUENCY AND ENVELOPE TESTS

Figure 5 shows an actual ADC-207 plot of the Beat Frequency Test. This test uses a 20 MHz clock input to the ADC-207 with a 20.002 MHz fullscale sine wave input. Although the converter would not normally be used in this mode because the input frequency violates Nyquist criteria for full recovery of signal information, the test is an excellent demonstration of the ADC-207's high-frequency performance.

The effect of the 2 kHz frequency difference between the input and the clock is that the output will be a 2 kHz sinusoidal digital data array which "walks" along the actual input at the 2 kHz beat note frequency. Any inability to follow the 20.002 MHz input will be immediately obvious by plotting the digital data array. Further arithmetic analysis may be done on the data array to determine spectral purity, harmonic distortion, etc. This test is an excellent indication of:

1. Full power input bandwidth of all 128 comparators. (Any gain loss would show as signal distortion.)
2. Phase response linearity vs. instantaneous signal magnitude. (Phase problems would show as improper codes.)
3. Comparator slew rate limiting.

Figure 6 shows an actual ADC-207 plot of the Envelope Test. This test is a variation of the previous test but uses a 10.002 MHz sinewave input to give two overlapping cycles when the data is reconstructed by a D/A converter output to an oscilloscope. The scope is triggered by the 20 MHz clock used by the A / D. Any asymmetry between positive and negative portions of the signal will be very obvious. This test is an excellent indication of slew rate capability. At the peaks of the envelope, consecutive samples swing completely through the input voltage range.

Figure 5. Beat Frequency Test at 20 MHz

Figure 6. 10 MHz Envelope Test

FFT TEST
This test actually produces an amplitude versus frequency graph (Figure 7) which indicates harmonic distortion and signal-to-noise ratio. The theoretical rms signal-to-noise ration for a 7 -bit converter is +43.8 dB .

Figure 7. FFT Test Using the ADC-207

ORDERING INFORMATION		
MODEL	TEMP. RANGE	PACKAGE
ADC-207MC	0 to $+70^{\circ} \mathrm{C}$	18-pin DIP
ADC-207MM	-55 to $+125^{\circ} \mathrm{C}$	18-pin DIP
ADC-207MM-QL	-55 to $+125^{\circ} \mathrm{C}$	18-pin DIP
ADC-207LC	0 to $+70^{\circ} \mathrm{C}$	24-pin CLCC
ADC-207LM	-55 to $+125^{\circ} \mathrm{C}$	24 -pin CLCC
ADC-207LM-QL	-55 to $+125^{\circ} \mathrm{C}$	24-pin CLCC
ACCESSORIES		
ADC-B207/208	Evaluation Board for DIP Version	
	(without ADC-207)	

miRnta P_{5} Murata Power Solutions

Murata Power Solutions, Inc.
11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A.
Tel: (508) 339-3000 (800) 233-2765 Fax: (508) 339-6356
www.murata-ps.com email: sales@murata-ps.com ISO 9001 and 14001 REGISTERED
03/20/09
Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without
notice.
© 2009 Murata Power Solutions, Inc.

USA:
Canada:
UK:
France: Montigny Le Bretonneux, Tel: +33 (0)1 346001 01, email: france@murata-ps.com
Germany: München, Tel: +49 (0)89-544334-0, email: munich@murata-ps.com
Japan: Tokyo, Tel: 3-3779-1031, email: sales_tokyo@murata-ps.com Osaka, Tel: 6-6354-2025, email: sales_osaka@murata-ps.com
China: Shanghai, Tel: +86 215027 3678, email: shanghai@murata-ps.com Guangzhou, Tel: +86 208221 8066, email: guangzhou@murata-ps.com
Singapore: Parkway Centre, Tel: +65 6348 9096, email: singapore@murata-ps.com

