datasheetbank_Logo
búsqueda de Hoja de datos y gratuito Fichas de descarga

LTC1419ACSW Ver la hoja de datos (PDF) - Linear Technology

Número de pieza
componentes Descripción
Lista de partido
LTC1419ACSW Datasheet PDF : 20 Pages
First Prev 11 12 13 14 15 16 17 18 19 20
LTC1419
APPLICATIONS INFORMATION
applied to the – AIN input. For zero offset error, apply
– 152µV (i.e., – 0.5LSB) at + AIN and adjust the offset at the
– AIN input until the output code flickers between 0000
0000 0000 00 and 1111 1111 1111 11. For full-scale
adjustment, an input voltage of 2.499544V (FS/2 – 1.5LSBs)
is applied to + AIN and R2 is adjusted until
the output code flickers between 0111 1111 1111 10 and
0111 1111 1111 11.
BOARD LAYOUT AND GROUNDING
Wire wrap boards are not recommended for high resolu-
tion or high speed A/D converters. To obtain the best
performance from the LTC1419, a printed circuit board
with ground plane is required. Layout should ensure that
digital and analog signal lines are separated as much as
possible. Particular care should be taken not to run any
digital track alongside an analog signal track or under-
neath the ADC.The analog input should be screened by
AGND.
An analog ground plane separate from the logic system
ground should be established under and around the ADC.
Pin 5 (AGND), Pin 14 and Pin 19 (ADC’s DGND) and all
other analog grounds should be connected to this single
analog ground point. The REFCOMP bypass capacitor and
the DVDD bypass capacitor should also be connected to
this analog ground plane. No other digital grounds should
be connected to this analog ground plane. Low impedance
analog and digital power supply common returns are
essential to low noise operation of the ADC and the foil
width for these tracks should be as wide as possible. In
applications where the ADC data outputs and control
signals are connected to a continuously active micropro-
cessor bus, it is possible to get errors in the conversion
results. These errors are due to feedthrough from the
microprocessor to the successive approximation com-
parator. The problem can be eliminated by forcing the
microprocessor into a WAIT state during conversion or by
using three-state buffers to isolate the ADC data bus. The
traces connecting the pins and bypass capacitors must be
kept short and should be made as wide as possible.
The LTC1419 has differential inputs to minimize noise
coupling. Common mode noise on the + AIN and – AIN
leads will be rejected by the input CMRR. The – AIN input
can be used as a ground sense for the + AIN input; the
LTC1419 will hold and convert the difference voltage
between + AIN and – AIN. The leads to + AIN (Pin 1) and – AIN
(Pin 2) should be kept as short as possible. In applications
where this is not possible, the + AIN and – AIN traces should
be run side by side to equalize coupling.
SUPPLY BYPASSING
High quality, low series resistance ceramic, 10µF bypass
capacitors should be used at the VDD and REFCOMP pins
as shown in the Typical Application on the fist page of this
data sheet. Surface mount ceramic capacitors such as
Murata GRM235Y5V106Z016 provide excellent bypass-
ing in a small board space. Alternatively, 10µF tantalum
capacitors in parallel with 0.1µF ceramic capacitors can be
used. Bypass capacitors must be located as close to the
pins as possible. The traces connecting the pins and the
bypass capacitors must be kept short and should be made
as wide as possible.
Example Layout
Figures 13a, 13b, 13c and 13d show the schematic and
layout of a suggested evaluation board. The layout demon-
strates the proper use of decoupling capacitors and ground
plane with a 2-layer printed circuit board.
ANALOG
INPUT
CIRCUITRY
1
+AIN
–AIN
+– 2
REFCOMP
4
10µF
AGND
5
LTC1419
VSS
26
10µF
AVDD DVDD
28 27
10µF
DGND
14
ANALOG GROUND PLANE
1419 F12
Figure 12. Power Supply Grounding Practice
DIGITAL
SYSTEM
1419fb
13

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]