datasheetbank_Logo
búsqueda de Hoja de datos y gratuito Fichas de descarga

IDT72205LB10TF(2000) Ver la hoja de datos (PDF) - Integrated Device Technology

Número de pieza
componentes Descripción
Lista de partido
IDT72205LB10TF
(Rev.:2000)
IDT
Integrated Device Technology IDT
IDT72205LB10TF Datasheet PDF : 16 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
IDT72205LB/72215LB/72225LB/72235LB/72245LB CMOS SyncFIFO™
256 x 18-BIT, 512 x 18, 1,024 x 18, 2,048 x 18 and 4,096 x 18
Commercial And Industrial Temperature Ranges
When the LD pin is LOW and WEN is HIGH, the WCLK input
is disabled; then a signal at this input can neither increment the
write offset register pointer, nor execute a write.
The contents of the offset registers can be read on the
output lines when the LD pin is set LOW and REN is set LOW;
then, data can be read on the LOW-to-HIGH transition of the
read clock (RCLK). The act of reading the control registers
employs a dedicated read offset register pointer. (The read
and write pointers operate independently).
A read and a write should not be performed simultaneously
to the offset registers.
FIRST LOAD (FL)
FL is grounded to indicate operation in the Single Device or
Width Expansion mode. In the Depth Expansion configuration,
FL is grounded to indicate it is the first device loaded and is set
to HIGH for all other devices in the Daisy Chain. (See Operating
Configurations for further details.)
WRITE EXPANSION INPUT (WXI)
This is a dual purpose pin. WXI is grounded to indicate
operation in the Single Device or Width Expansion mode. WXI
is connected to Write Expansion Out (WXO) of the previous
device in the Daisy Chain Depth Expansion mode.
READ EXPANSION INPUT (RXI)
This is a dual purpose pin. RXI is grounded to indicate
operation in the Single Device or Width Expansion mode. RXI
is connected to Read Expansion Out (RXO) of the previous
device in the Daisy Chain Depth Expansion mode.
OUTPUTS:
FULL FLAG (FF)
When the FIFO is full, FF will go LOW, inhibiting further
write operations. When FF is HIGH, the FIFO is not full. If no
reads are performed after a reset, FF will go LOW after D
writes to the FIFO. D = 256 writes for the IDT72205LB, 512 for
the IDT72215LB, 1,024 for the IDT72225LB, 2,048 for the
IDT72235LB and 4,096 for the IDT72245LB.
The FF is updated on the LOW-to-HIGH transition of the
write clock (WCLK).
EMPTY FLAG (EF)
When the FIFO is empty, EF will go LOW, inhibiting further
read operations. When EF is HIGH, the FIFO is not empty.
The EF is updated on the LOW-to-HIGH transition of the
read clock (RCLK).
PROGRAMMABLE ALMOST-FULL FLAG (PAF)
The Programmable Almost-Full Flag (PAF) will go LOW
when FIFO reaches the Almost-Full condition. If no reads are
performed after Reset (RS), the PAF will go LOW after (256-m)
writes for the IDT72205LB, (512-m) writes for the IDT72215LB,
(1,024-m) writes for the IDT72225LB, (2,048–m) writes for the
IDT72235LB and (4,096–m) writes for the IDT72245LB. The
offset “m” is defined in the FULL offset register.
If there is no Full offset specified, the PAF will be LOW when
the device is 31 away from completely full for IDT72205LB, 63
away from completely full for IDT72215LB, and 127 away from
completely full for IDT72225LB/72235LB/72245LB.
The PAF is asserted LOW on the LOW-to-HIGH transition
of the write clock (WCLK). PAF is reset to HIGH on the LOW-
to-HIGH transition of the read clock (RCLK). Thus PAF is
asynchronous.
PROGRAMMABLE ALMOST-EMPTY FLAG (PAE)
The Programmable Almost-Empty Flag (PAE) will go LOW
when the read pointer is “n+1” locations less than the write
pointer. The offset “n” is defined in the EMPTY offset register.
If there is no Empty offset specified, the Programmable
Almost-Empty Flag (PAE) will be LOW when the device is 31
away from completely empty for IDT72205LB, 63 away from
completely empty for IDT72215LB, and 127 away from com-
pletely empty for IDT72225LB/72235LB/72245LB.
The PAE is asserted LOW on the LOW-to-HIGH transition
of the read clock (RCLK). PAE is reset to HIGH on the LOW-
to-HIGH transition of the write clock (WCLK). Thus PAE is
asynchronous.
WRITE EXPANSION OUT/HALF-FULL FLAG (WXO/HF)
This is a dual-purpose output. In the Single Device and
Width Expansion mode, when Write Expansion In (WXI) and
Read Expansion In (RXI) are grounded, this output acts as an
indication of a half-full memory.
TABLE I — STATUS FLAGS
Number of Words in FIFO Memory
72205
72215
72225
72235
72245
FF PAF HF PAE EF
0
1 to n(1)
0
1 to n(1)
0
1 to n(1)
0
1 to n(1)
0
1 to n(1)
HH H L L
HH H L H
(n + 1) to 128
(n + 1) to 256
(n + 1) to 512
(n + 1) to 1,024
(n + 1) to 2,048
HH H HH
129 to (256-(m+1)) 257 to (512-(m+1)) 513 to (1,024-(m+1)) 1,025 to (2,048-(m+1)) 2,049 to (4,096-(m+1)) H H L H H
(256-m)(2) to 255 (512-m)(2) to 511 (1,024-m)(2) to 1,023 (2,048-m)(2) to 2,047 (4,096-m)(2) to 4,095 H L L H H
256
512
1,024
2,048
4,096
L L L HH
NOTES:
1. n = Empty Offset (Default Values : IDT72205 n=31, IDT72215 n = 63, IDT72225/72235/72245 n = 127)
2. m = Full Offset (Default Values : IDT72205 n=31, IDT72215 n = 63, IDT72225/72235/72245 n = 127)
2766 tbl 09
7

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]