datasheetbank_Logo
búsqueda de Hoja de datos y gratuito Fichas de descarga

LT3980IMSE-TRPBF Ver la hoja de datos (PDF) - Linear Technology

Número de pieza
componentes Descripción
Lista de partido
LT3980IMSE-TRPBF Datasheet PDF : 24 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
LT3980
Applications Information
Of course, such a simple design guide will not always re-
sult in the optimum inductor for your application. A larger
value inductor provides a slightly higher maximum load
current and will reduce the output voltage ripple. If your
load is lower than 2A, then you can decrease the value of
the inductor and operate with higher ripple current. This
allows you to use a physically smaller inductor, or one
with a lower DCR resulting in higher efficiency. There are
several graphs in the Typical Performance Characteristics
section of this data sheet that show the maximum load
current as a function of input voltage and inductor value
for several popular output voltages. Low inductance may
result in discontinuous mode operation, which is okay
but further reduces maximum load current. For details of
maximum output current and discontinuous mode oper-
ation, see Linear Technology Application Note 44. Finally,
for duty cycles greater than 50% (VOUT/VIN > 0.5), there
is a minimum inductance required to avoid subharmonic
oscillations. See AN19.
Input Capacitor
Bypass the input of the LT3980 circuit with a ceramic
capacitor of X7R or X5R type. Y5V types have poor
performance over temperature and applied voltage, and
should not be used. A 10µF to 22µF ceramic capacitor is
adequate to bypass the LT3980 and will easily handle the
ripple current. Note that larger input capacitance is required
when a lower switching frequency is used. If the input
power source has high impedance, or there is significant
inductance due to long wires or cables, additional bulk
capacitance may be necessary. This can be provided with
a lower performance electrolytic capacitor.
Step-down regulators draw current from the input sup-
ply in pulses with very fast rise and fall times. The input
capacitor is required to reduce the resulting voltage rip-
ple at the LT3980 and to force this very high frequency
switching current into a tight local loop, minimizing EMI.
A 10µF capacitor is capable of this task, but only if it is
placed close to the LT3980 and the catch diode (see the
PCB Layout section). A second precaution regarding the
ceramic input capacitor concerns the maximum input
voltage rating of the LT3980. A ceramic input capacitor
combined with trace or cable inductance forms a high
quality (under damped) tank circuit. If the LT3980 circuit
is plugged into a live supply, the input voltage can ring to
twice its nominal value, possibly exceeding the LT3980’s
voltage rating. This situation is easily avoided (see the Hot
Plugging Safety section).
For space sensitive applications, a 4.7µF ceramic ca-
pacitor can be used for local bypassing of the LT3980
input. However, the lower input capacitance will result in
increased input current ripple and input voltage ripple, and
may couple noise into other circuitry. Also, the increased
voltage ripple will raise the minimum operating voltage
of the LT3980 to ~3.7V.
Output Capacitor and Output Ripple
The output capacitor has two essential functions. Along
with the inductor, it filters the square wave generated by the
LT3980 to produce the DC output. In this role it determines
the output ripple, and low impedance at the switching
frequency is important. The second function is to store
energy in order to satisfy transient loads and stabilize the
LT3980’s control loop. Ceramic capacitors have very low
equivalent series resistance (ESR) and provide the best
ripple performance. A good starting value is:
COUT
=
100
VOUT fSW
where fSW is in MHz, and COUT is the recommended output
capacitance in µF. Use X5R or X7R types. This choice will
provide low output ripple and good transient response.
Transient performance can be improved with a higher value
capacitor if the compensation network is also adjusted
to maintain the loop bandwidth. A lower value of output
capacitor can be used to save space and cost but transient
performance will suffer. See the Frequency Compensation
section to choose an appropriate compensation network.
When choosing a capacitor, look carefully through the
data sheet to find out what the actual capacitance is under
operating conditions (applied voltage and temperature).
A physically larger capacitor, or one with a higher voltage
rating, may be required. High performance tantalum or
electrolytic capacitors can be used for the output capacitor.
Low ESR is important, so choose one that is intended for
For more information www.linear.com/LT3980
3980fa
11

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]