datasheetbank_Logo
búsqueda de Hoja de datos y gratuito Fichas de descarga

IDT72V3622L10PFG Ver la hoja de datos (PDF) - Integrated Device Technology

Número de pieza
componentes Descripción
fabricante
IDT72V3622L10PFG
IDT
Integrated Device Technology IDT
IDT72V3622L10PFG Datasheet PDF : 29 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
IDT72V3622/72V3632/72V3642 CMOS 3.3V SyncBiFIFOTM
256 x 36 x 2, 512 x 36 x 2, 1,024 x 36 x 2
The Full/Input Ready flag of a FlFO is synchronized to the port clock
that writes data to its array. For both FWFT and IDT Standard modes,
each time a word is written to a FIFO, its write pointer is incremented. The
state machine that controls a Full/Input Ready flag monitors a write
pointer and read pointer comparator that indicates when the FlFO
memory status is full, full-1, or full-2. From the time a word is read from
a FIFO, its previous memory location is ready to be written to in a
minimum of two cycles of the Full/Input Ready flag synchronizing clock.
Therefore, a Full/Input Ready flag is LOW if less than two cycles of the
Full/Input Ready flag synchronizing clock have elapsed since the next
memory write location has been read. The second LOW-to-HIGH
transition on the Full/Input Ready flag synchronizing clock after the read
sets the Full/Input Ready flag HIGH.
A LOW-to-HIGH transition on a Full/Input Ready flag synchronizing clock
begins the first synchronization cycle of a read if the clock transition occurs at
time tSKEW1 or greater after the read. Otherwise, the subsequent clock cycle can
be the first synchronization cycle (see Figures 12 through 15 for FFA/IRA and
FFB/IRB timing diagrams).
ALMOST-EMPTY FLAGS (AEA, AEB)
The Almost-Empty flag of a FIFO is synchronized to the port clock that reads
data from its array. The state machine that controls an Almost-Empty flag monitors
a write pointer and read pointer comparator that indicates when the FIFO
memory status is almost-empty, almost-empty+1, or almost-empty+2. The
almost-empty state is defined by the contents of register X1 for AEB and register
X2 for AEA. These registers are loaded with preset values during a FIFO reset
or programmed from port A (see Almost-Empty flag and Almost-Full flag offset
programming section). An Almost-Empty flag is LOW when its FIFO contains
X or less words and is HIGH when its FIFO contains (X+1) or more words. A
data word present in the FIFO output register has been read from memory.
Two LOW-to-HIGH transitions of the Almost-Empty flag synchronizing
clock are required after a FIFO write for its Almost-Empty flag to reflect the new
level of fill. Therefore, the Almost-Full flag of a FIFO containing (X+1) or more
words remains LOW if two cycles of its synchronizing clock have not elapsed
since the write that filled the memory to the (X+1) level. An Almost-Empty flag
is set HIGH by the second LOW-to-HIGH transition of its synchronizing clock after
the FIFO write that fills memory to the (X+1) level. A LOW-to-HIGH transition of
an Almost-Empty flag synchronizing clock begins the first synchronization cycle
if it occurs at time tSKEW2 or greater after the write that fills the FIFO to (X+1) words.
Otherwise, the subsequent synchronizing clock cycle may be the first synchro-
nization cycle. (See Figures 16 and 17).
ALMOST-FULL FLAGS (AFA, AFB)
The Almost-Full flag of a FIFO is synchronized to the port clock that writes
data to its array. The state machine that controls an Almost-Full flag monitors a
write pointer and read pointer comparator that indicates when the FIFO
memory status is almost-full, almost-full-1, or almost-full-2. The almost-
COMMERCIAL TEMPERATURE RANGE
full state is defined by the contents of register Y1 for AFA and register Y2
for AFB. These registers are loaded with preset values during a FlFO
reset or programmed from port A (see Almost-Empty flag and Almost-
Full flag offset programming section). An Almost-Full flag is LOW when
the number of words in its FIFO is greater than or equal to (256-Y), (512-
Y), or (1,024-Y) for the IDT72V3622, IDT72V3632, or IDT72V3642
respectively. An Almost-Full flag is HIGH when the number of words in
its FIFO is less than or equal to [256-(Y+1)], [512-(Y+1)], or [1,024-(Y+1)]
for the IDT72V3622, IDT72V3632, or IDT72V3642 respectively. Note that
a data word present in the FIFO output register has been read from
memory.
Two LOW-to-HIGH transitions of the Almost-Full flag synchronizing clock
are required after a FIFO read for its Almost-Full flag to reflect the new level of
fill. Therefore, the Almost-Full flag of a FIFO containing [256/512/1,024-(Y+1)]
or less words remains LOW if two cycles of its synchronizing clock have not
elapsed since the read that reduced the number of words in memory to [256/
512/1,024-(Y+1)]. An Almost-Full flag is set HIGH by the second LOW-to-HIGH
transition of its synchronizing clock after the FIFO read that reduces the number
of words in memory to [256/512/1,024-(Y+1)]. A LOW-to-HIGH transition of an
Almost-Full flag synchronizing clock begins the first synchronization cycle if it
occurs at time tSKEW2 or greater after the read that reduces the number of words
in memory to [256/512/1,024-(Y+1)]. Otherwise, the subsequent synchroniz-
ing clock cycle may be the first synchronization cycle (see Figures 18 and 19).
MAILBOX REGISTERS
Each FIFO has a 36-bit bypass register to pass command and control
information between port A and port B without putting it in queue. The Mailbox
select (MBA, MBB) inputs choose between a mail register and a FIFO for a port
data transfer operation. A LOW-to-HIGH transition on CLKA writes A0-A35 data
to the mail1 register when a port A Write is selected by CSA, W/RA, and ENA
and with MBA HIGH. A LOW-to-HIGH transition on CLKB writes B0-B35 data
to the mail2 register when a port B Write is selected by CSB, W/RB, and ENB
and with MBB HIGH. Writing data to a mail register sets its corresponding flag
(MBF1 or MBF2) LOW. Attempted writes to a mail register are ignored while
the mail flag is LOW.
When data outputs of a port are active, the data on the bus comes from the
FIFO output register when the port Mailbox select input is LOW and from the mail
register when the port mailbox select input is HIGH. The Mail1 Register Flag
(MBF1) is set HIGH by a LOW-to-HIGH transition on CLKB when a port B Read
is selected by CSB, W/RB, and ENB and with MBB HIGH. The Mail2 Register
Flag (MBF2) is set HIGH by a LOW-to-HIGH transition on CLKA when a port
A read is selected by CSA, W/RA, and ENA and with MBA HIGH. The data
in a mail register remains intact after it is read and changes only when new data
is written to the register. For mail register and Mail Register Flag timing diagrams,
see Figure 20 and 21.
13

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]