datasheetbank_Logo
búsqueda de Hoja de datos y gratuito Fichas de descarga

AD9396 Ver la hoja de datos (PDF) - Analog Devices

Número de pieza
componentes Descripción
Lista de partido
AD9396
ADI
Analog Devices ADI
AD9396 Datasheet PDF : 48 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
AD9396
Sync Slicer
The purpose of the sync slicer is to extract the sync signal from
the green graphics or luminance video signal that is connected
to the SOGIN input. The sync signal is extracted in a two-step
process. First, the SOG input (typically 0.3 V below the black
level) is detected and clamped to a known dc voltage. Next, the
signal is routed to a comparator with a variable trigger level (set
by Register 0x1D, Bits [7:3]), but nominally 0.128 V above the
clamped voltage. The sync slicer output is a digital composite
sync signal containing both HSYNC and VSYNC information
(see Figure 9).
Sync Separator
As part of sync processing, the sync separator’s task is to extract
VSYNC from the composite sync signal. It works on the idea
that the VSYNC signal stays active for a much longer time than
the HSYNC signal. By using a digital low-pass filter and a
digital comparator, it rejects pulses with small durations (such
as HSYNCs and equalization pulses) and only passes pulses
with large durations, such as VSYNC (see Figure 9).
The threshold of the digital comparator is programmable for
maximum flexibility. To program the threshold duration, write
a value (N) to Register 0x11. The resulting pulse width is
N × 200 ns. So if N = 5, the digital comparator threshold is 1 μs.
Any pulses less than 1 μs are rejected, while any pulse greater
than 1 μs passes through.
The sync separator on the AD9396 is simply an 8-bit digital
counter with a 6 MHz clock. It works independently of the
polarity of the composite sync signal. Polarities are determined
elsewhere on the chip. The basic idea is that the counter counts
up when HSYNC pulses are present. But because HSYNC
pulses are relatively short in width, the counter only reaches a
value of N before the pulse ends. It then starts counting down
until eventually reaching 0 before the next HSYNC pulse
arrives. The specific value of N varies for different video modes,
but is always less than 255. For example, with a 1 μs width
HSYNC, the counter only reaches 5 (1 μs/200 ns = 5). Now,
when VSYNC is present on the composite sync the counter also
counts up. However, because the VSYNC signal is much longer,
it counts to a higher number, M. For most video modes, M is at
least 255. So VSYNC can be detected on the composite sync
signal by detecting when the counter counts to higher than N.
The specific count that triggers detection, T, can be
programmed through the Serial Register 0x11.
Once VSYNC has been detected, there is a similar process to
detect when it goes inactive. At detection, the counter first
resets to 0, then starts counting up when VSYNC finishes. As in
the previous case, it detects the absence of VSYNC when the
counter reaches the threshold count, T. In this way, it rejects
noise and/or serration pulses. Once VSYNC is detected to be
absent, the counter resets to 0 and begins the cycle again.
There are two things to keep in mind when using the sync
separator. First, the resulting clean VSYNC output is delayed
from the original VSYNC by a duration equal to the digital
comparator threshold (N × 200 ns). Second, there is some
variability to the 200 ns multiplier value. The maximum varia-
bility over all operating conditions is ±20% (160 ns to 240 ns).
Because normal VSYNC and HSYNC pulse widths differ by a
factor of about 500 or more, 20% variability is not an issue.
700mV MAXIMUM
SOGIN
+300mV
0mV
–300mV
SOGOUT OUTPUT
CONNECTED TO
HSIN
NEGATIVE PULSE WIDTH = 40 SAMPLE CLOCKS
COMPOSITE
SYNC
AT HSIN
VSOUT
FROM SYNC
SEPARATOR
Figure 9. Sync Slicer and Sync Separator Output
Rev. 0 | Page 17 of 48

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]